坐标测量机(Coordinate Measuring Machine,缩写为CMM)是一种具有很强柔性的尺寸测量设备。
CMM在工业界的应用开始于对棱柱类零件的快速、精确测量。但随着CMM各方面技术的发展(如回转工作台、触发
式测头的产生),特别是计算机控制的CMM的出现,目前,CMM已广泛应用于对各类零件的自动检测。与投影仪、轮廓
测量仪、圆度测量仪、激光测量仪等相比较,CMM具有适应性强,功能完善等特点。坐标测量机的出现,不仅提高了检测
设备的水平,而且在自动化检测中也是一个生要的突破。
CMM在自动化程度方面有很大的差别。计算机控制的CMM具有全自动执行检测、分析检测数据和输出检测结果的功
能,而一般的CMM仅具有手动控制功能或手动控制加示教功能。目前,随着计算机硬件性能的提高和价格的降低,绝大部
分CMM均配有计算机,利用计算机可对测量所得的数据进行在线分析,以判别被测工件是否合格。同时也可以使用统计技
术来确定工艺能力是否满足,分析误差来源等。
除了在质量检测方面使用CMM外,CMM还可应用于对实物的仿物的信制加工中,即所谓逆向工程(Revers
Engineering)。在这种情况下,由CMM测量实际工件,并将测量所得的数据传送到CAD/CAM系统中,由CAD/CAM系统
对这些数据进行加工处理,建立CAD模型,并进一步生成加工指令来指导加工。
7.1.1CMM结构及测头
7.1.1.1CMM结构
CMM由安装工件的工作台、立柱、横梁、导轨、三维测头、坐标位移测量装置和计算机数控装置组成。CMM的工作
台一般由花岗岩制成,花岗岩是经过了长时间自然时效处理的岩石,内部应力小,用它做工作台具有吸振、稳定,耐久及
便于保养等特点,从而为安装在其上的其它部件提供了一个紧实稳固的基础。三维测头的头架与横梁之间采用低摩控的空
气轴承连接,采用空气轴承还有一个好处就是可以减小导轨表面机械缺陷对运动精度的影响。在数控程序或手动控制下测
头沿被测表面移动,移动过程中测头将记录测量数据,计算机根据记录的测量结果,按给定的坐标系统计算被测尺寸。
按结构可将CMM分为以下几种形式:悬臂式、移动桥式、固定桥式、水平悬臂式。在实际应用中可根据被测工件的技
术规范、尺寸规格以及各种结构的具体特点选择不同的结构形式。桥式和龙门式具有较高的刚度,可有效地减小由于重力
的作用,使移动部件在不同位置时造成的CMM非均匀变形,从而在垂直方向上具有较高的精度。龙门式的设计结构主要是
为了测量体积比较大的物体。由于本身结构的特点,桥式和龙门式的CMM具有较大的惯性,影响了其加减速性能,测量速
度一般较低。当前,在人们追求测量时间尽可能短的情况下,测量速度低成为桥式和龙门式的CMM缺点之一。另外,敞开
空间较小,从而限制了工件的自动装卸;悬臂式的CMM惯性小,因而加减速性能较高,有利于提高测量时的速度。但是,
悬臂式的CMM缺少立柱的支撑,因而对工件在垂直方向上的检测精度有限制。悬臂式的CMM由于有较大的敞开空间,有
利于工件的自动装卸。
CMM的操作与CNC机床相似。在计算机控制的制造系统中,CMM的控制程序和坐标数据可以由中央计算机传送,测
量结果亦可反馈给主控计算机。
CMM在尺寸上有很大的差别,小的手动控制的CMM其体积可能只有0.05m,而大的CMM可用来测量整个汽车的外轮
廓。CMM的测量范围是由三维测头在空间X,Y,Z方向所能移动的最大范围确定的。在实际使用当中测量范围受到工作台
大小以及工件不同形状的限制。为了适应不同用户的要求,制造商一般向用户提供一系列不同测量范围、不同配置的CMM
。
7.1.1.2 CMM测头
测头是CMM非常关键的部件,可以这样说,测头的发展先进程度就标志着CMM的发展先进程度。CMM可以配置不同
类型的测头传感器。接触类的测头主要包括触发式、模拟式两种。非接触式包括激光三角测量、激光成像、机器视觉等。
最初人们使用CMM时,由操作人员移动坐标轴,所用的测头是刚性的,当刚性测头以一定的接触力接触到被测表面时,人
为记录下各坐标轴的坐标值。这种初期的CMM不可能具有自动检测的能力,使用范围受到了极大的限制。但由于它具有了
三坐标的雏形,在使用雏测头钻孔的位置时也相当有效。
CMM能被广泛地应用,其主要的一个原因是发明了触发式测头,触发式测头的最大功能是它的触发功能,即当探针接
触被测表面并有一定的微小位移时,测头就发出一电信号,利用此信号可以立即锁定当前坐标轴的位置,从而自动记录坐
标值。触发式测头是由雷尼绍(Renishaw)公司发明的,现在该公司生产一系列的触发式测头,可用于CMM或CNC加工
中心。雷尼绍公司生产的CMM测头现已成为行业标准配置,广泛地用于各大生产厂家的CMM上。
CMM是用控针端部球的中心坐标值作为点的输入数据。因此,在测量时必须用恰当的方法推断测头端部球与被测零件
的触点位置。在非CAD指导的检测系统中,通常在接触点附近作三点测量,从而近似地找出通过该三点的平面法线,这不
仅要耗费很多时间,而且测量精度也比较低。在CAD指导的检测系统中可以根据被测工件的CAD模型直接计算出被测点法
向,让测头从法向接触被测点,这样就比较容易判断触点的位置。
探针的作用是为红宝石球提供一个固定的支撑,当探针接触被测表面时,探针的微小移动可触发开关,从而发出信号
。探针有不同的类型,根据不同的需要可以选择不同类型的探针。为了获得较高的测量精度,建议在实际测量时遵循以下
两条原则:①尽量使用长度短的和刚性好的探针。测量时探针的弯曲越大,偏移越大,测量的重复精度就越低。②尽量选
用直径大的红宝石球探针。选用直径大的红宝石球控针,一方面可以减小加工表面缺陷对测量精度的影响,另一方面可以
增大探针的有效工作长度(EWL)。
7.1.2CMM的不确定性及误差
使用CMM进行测量时存在一个很复杂的综合误差,这一复杂的综合误差造成了CMM测量结果的不确定性。我们知道
误差有系统性误差和随机性误差,只有系统性误差可以被承测和补偿。引起CMM测量系统性误差的原因有:CMM本身的
几何误差,CMM的结构的受力受热变形、读数光栅测时由于接触力及磨擦力的作用探针将发生偏转,这种偏转是随机的、
无法预料的,故将导致随机测量误差。
测量误差可以由CMM控制软件的程序及数值计算所产生,可以用不同制造商的CMM对同一物体进行测量,比较测量
结果即可说明这一问题。比如通过对同一球的周围测量五点来确定它的直径,假设没有软件编写上的错误,仅仅是所采用
程序语言的有效位数及计算方法不同,测量所用程序语言的有效位数及计算方法不同,测量所得结果就会有差别。对于简
单的测量,比如在某一影响很小,一般情况下表现不出来。但是对于一些较复杂的测量,比如对线轮廓度、面轮廓度的测
量,因为这种测量结果不是直接得出的,而是要在对采集数据进行复杂处理的基础上得出的。所以软件和算法就显得比较
重要,采用不同的算法对测量结果的影响就会体现出来。
此外,在CMM系统中,温度中也是考虑的重要因素之一。在测量过程中如果环境温度发生变化,或者由于CMM的运
动,内部产生热量,都将会导致CMM与环境之间,CMM内部各成变形不均匀,从而造成测量误差。测量的标准温度一般
为20℃,大多数制造厂商都是在此温度下标定其CMM的各种性能指标的。在实际使用当中环境温度很有可能超出规定的
范围,这种情况下,测量结果将达不到原标定的精度。为了减小温度变化对测量结果的影响,一方面要对制造CMM的材料
进行选择,比如选择对温度变化不敏感的材料,或者选择一些热惯量小的材料,用这种材料构成的机器结构可以很快地跟
随环境温度的变化,有利于从软件方面进行温度补偿。另一方面也要从结构上进行考虑,比如轻型的悬臂式结构的CMM比
桥式的花岗岩制成的CMM更有利于减小温度的影响。
另外,当CMM安装在一些大型加工机械附近时,机器工作时产生的振动也不利于CMM的有效执行。还不,象空气、
电力供给这些因素也有影响,对这些因素也应给予适当考虑。
7.2.1 CMM的使用及编程
7.1.3.1探针的校准
在对工件进行实际检测之前,首先要对测量过程中用到的探针进行校准。因为在许多尺寸的测量当中需要沿不同的方
向进行探测。系统记录的是探针中心的坐标,而不是接触点的坐标。为了获得接触点的坐标,必须对探针半径进行补偿。
因此首先必须对探针进行校准。一般使用校准球来校准探针。校准球是一个已知直径的标准球,校准探针的过程实际上就
是对这个已知直径的标准球进行测量直径的过程,该球的测量值等于校准球的直径加探针的直径,这样也就可以确定探针
直径。将探针直径除以2,得出探针半径,系统用这个值就可以对测量结果进行补偿。校准的具体操作步骤一般如下:将
探头正确地安装在CMM的主轴(一般为Z)上;将探针在工件表面移动,看是否均能测得到,检查探针是否清洁。记住,
一旦探针的位置发生改变,就必须重新校准;将校准球装在工作台上,要确保不用移动校准球上打点,测点当选最少为五
个;给定的点当数测完后,就可以得到测量所得的校准球的位置、直径、形状偏差,由此可以得到探针的半径值。
测量过程所有要用到的探针都要进行校准,而且一旦探针改变位置,或者取下后下次再用时要重新进行校准,这样一
来在探针的校准方面要用去大量的时间。为解决这一问题,有的CMM上配有测头库和测头自动交换装置。测头库中的测头
经过一次校准后可重复交换使用而无需重新校准。